298 research outputs found

    Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model

    Full text link
    The conformation and the phase diagram of a membrane protein are investigated via grand canonical ensemble approach using a homopolymer model. We discuss the nature and pathway of α\alpha-helix integration into the membrane that results depending upon membrane permeability and polymer adsorptivity. For a membrane with the permeability larger than a critical value, the integration becomes the second order transition that occurs at the same temperature as that of the adsorption transition. For a nonadsorbing membrane, the integration is of the first order due to the aggregation of α\alpha-helices.Comment: RevTeX with 5 postscript figure

    Transmembrane but not soluble helices fold inside the ribosome tunnel

    Get PDF
    Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosome. Using in vitro translation of truncated nascent chains trapped within the ribosome tunnel and molecular dynamics simulations, we show that folding in the ribosome is attained for TM helices but not for soluble helices, presumably facilitating SRP (signal recognition particle) recognition and/or a favourable conformation for membrane integration upon translocon entry

    A method for detergent-free isolation of membrane proteins in their local lipid environment.

    Get PDF
    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins

    Expression and purification of recombinant G protein-coupled receptors: A review

    Get PDF
    Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques

    Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems

    Get PDF
    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.United States. Defense Advanced Research Projects Agency (DARPA-HR0011-09-C-0012)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT

    Get PDF
    Heterologous expression is a landmark technique for studying a protein itself or its effect on the expression host, in which membrane-embedded proteins are a common choice. Yet, the impact of inserting a foreign protein to the lipid environment of host membranes, has never been addressed. Here we demonstrated that heterologous expression of the Artemia franciscana adenine nucleotide translocase (ANT) in yeasts altered lipidomic composition of their inner mitochondrial membranes. Along with this, activities of complex II, IV and ATP synthase, all membrane-embedded components, were significantly decreased while their expression levels remained unaffected. Although the results represent an individual case of expressing a crustacean protein in yeast inner mitochondrial membranes, it cannot be excluded that host lipidome alterations is a more widespread epiphenomenon, potentially biasing heterologous expression experiments. Finally, our results raise the possibility that not only lipids modulate protein function, but also membrane-embedded proteins modulate lipid composition, thus revealing a reciprocal mode of regulation for these two biomolecular entities

    Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts

    Get PDF
    Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
    corecore